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Abstract. Completedislocations in quasicrystals are intersections of dislocations in a high-
dimensional lattice with an irrational cut that represents the physical space. We study the
properties which proceed from that definition, either by methods relevant to the Volterra process,
or by topological methods.The Volterra process applies in the high-dimensional latticein a rather
trivial way, but its restriction to the quasicrystal introduces very unusual geometrical properties,
described in terms ofphasondeformations and of their singularities (mismatches). For example,
the motion of a defect is generically non-commutative: the ‘landscape’ of mismatches carried
by complete dislocations or disclinations in motion depends on the path which is followed by
the defect between two positions, when two such paths surround a defect. The same type of
argument applies,mutatis mutandis, to the question of the intersection of two defects. Other
properties, of a more metallurgical nature, ensue from that use of the Volterra process, like the
existence of stacking faults in QCs, bound by incomplete dislocations, and the relationship
between mismatches and the reshuffling of atoms. Now, if one wishes to describe these
remarkable properties with the sole use of physical observables (i.e. without mentioning the
high-dimensional lattice), it appears that the natural language is the language of thetopological
theory of defects in the quasilattice. In particular it is shown that the group which classifies
the dislocations is non-Abelian, a property in a direct relationship with the above-mentioned
non-commutativity. We give the name ofdisvectionsto complete dislocations, because of their
relationship with Cartan’s transvections, which are translations with non-Abelian characters in
a hyperbolic space.

1. Introduction

The question of the nature of topological defects in quasicrystals (QCs) has already been
addressed by several authors: in particular it has been shown that the concept of dislocation
(Levineet al 1985, Kĺemanet al 1986) still makes sense (as does the concept of disclination;
Bohsung and Trebin 1989), although there are no repeat lattice vectors in a QC. And
indeed their existence is not in any doubt, since dislocations have been observed in QCs
by electron microscopy techniques, and their Burgers vectors measured with the help of
diffraction contrast theory (Wollgartenet al 1991, Wang and Dai 1993). However, their
true nature is somewhat more involved than in standard crystals. As the theory shows,
‘perfect’ dislocations in QCs are indeed always attended by other types of defect, usually
called phason defects, or phason singularities—in the sense that they are the outcome of the
phaseshifts of the atomic configurations when the physical spaceP‖ is moved parallel to
itself through the high-dimensional spaceRd—or mismatches. These mismatches continue
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to be mysterious, in spite of the effort devoted to understanding their nature. However,
dislocations and their accompanying sets of mismatches have been classified, making use of
the topological theory of defects (Kléman 1990, 1992). The same approach is reconsidered
in the second section of this paper, in a presentation which is more straightforward than
in our former publications. But the main purpose of this paper is different: we want
to tackle the classification problem keeping as close as possible to another approach, the
standard Volterra process and its implications (e.g. the concepts of stacking fault, and of
glide plane—in brief, all of those concepts that have led to the richness of materials science);
this methodology not only has the advantage of providing a physical interpretation for the
abstractions of the topological theory—this is why its presentation has gained in clarity—but
also it is complementary to it, since those concepts would not appear naturally, were the
topological theory our only guide.

Hence, section 2 is a description in terms of Volterra concepts of the unusual
characteristics of the dislocations of the quasicrystalline lattice in the physical spaceP‖,
conceived as intersections of the (hyper-) dislocations of a high-dimensional crystalline
lattice Ed in Rd with the physical space. The concepts that we introduce in this section are
those of the stacking fault, reshuffling of atoms, and the non-commutativity of dislocation
movement, this latter being precisely the effect of the presence of fields of mismatches.
Some of these results have already been published in theProfessor Kroupa Festschrift
(Kl éman 1995). Section 3 expresses the same subject in terms of the topological theory of
defects, which helps to nicely classify defects and in particular gives a firm setting for the
concept of non-commutativity. This section of the paper, although less original, contains
new views arising from the analysis that precedes it.

We shall assume in the following that the reader has some familiarity with the two
approaches to the classification of defects—on one hand the Volterra classification of
dislocations (Friedel 1964), and on the other hand the topological theory of defects, to which
many reviews have been devoted (Mermin 1979, Michel 1980), and which is indispensable
when defects other than dislocations are present. We shall also assume some familiarity
with the essentials of the high-dimensional description of quasicrystals (for a bibliography
and a selection of articles on quasicrystals, see Steinhardt and Ostlund (1987), DiVincenzo
and Steinhardt (1991)); we shall use the definition of a QC as a set of vertices determined by
the intersections of the so-called ‘atomic surfaces’S with the physical spaceP‖ (Bak 1985).
The deformations of the physical space will be defined as resulting from deformations in
the high-dimensional space, that have the effect of modifying the intersections of the atomic
surfaces withP‖, which is assumed fixed in the laboratory frame†.

Generically, thed⊥-dimensional atomic surfaces which we consider are manifolds
carried by the vertices of ad-dimensional hypercubic latticeEd , for which they play the same
role as atoms play in a 3D crystal; as such, the atomic surfaces are undeformable entities.
P‖ is ad‖-dimensional linear subset of the euclidean spaceRd where the hyperlattice ‘lives’,
and cutsRd along an irrational direction inEd . ThereforeP‖ contains at most one vertex
of Ed . Thed⊥-dimensional complementary spaceP⊥ is such that we haveRd = P‖ ⊕ P⊥,
the direct sum; there is therefore a copy ofP⊥ perpendicular toP‖ at any of its points. We
also introduce the so-called acceptance domainA⊥, which is the projection onP⊥ of a unit
hypercube having the size and the orientation of a hypercube belonging toEd (see figure 1).

† Another method for deforming the QC consists in keeping the high-dimensional space undeformed, and
deformingP‖ accordingly, to get the same result. In that case one has to make a distinction between the deformed
d‖-dimensional space (call itP′

‖), which obviously can no longer play the role of a ‘physical space’, and the
physical spacesensu stricto, the undeformedP‖. This latter method lacks generality, but might help one to
visualize the deformation in physical space.
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Figure 1. The QC is the intersection of the atomic surfaces carried by the vertices of the
hyperlattice with ad‖-dimensional irrational cutP‖ of Ed (hered‖ = 1, d = 2, tanα = τ−1;
τ = (1 + √

5)/2 is the Golden Ratio). In this picture, the atomic surfaces are supposed to be
segments of line congruent to the acceptance domainA⊥. The lattice is globally invariant under
a shift of the cut plane alongP⊥; this is the phase invariance.

It will play the role of an extended parameter space in the second section of this paper, and
will under no circumstances be given the meaning that it has in the well-known alternative
definition of a QC, the cut-and-project method (Duneau and Katz 1985, Katz and Duneau
1985).

2. Dislocations inRd and their intersections with P‖

We recall that the definition of a dislocation in a three-dimensional crystal (Friedel 1964)
requires two ingredients, the lineL along which the symmetry is broken, and the broken
symmetry, namely a translationb or a rotationω, or both. The Volterra process is a
gedankenexperiment aimed at creating such an object starting from the perfect ordered
medium, and consists in introducing a ‘cut surface’Σ bound by the lineL, displacing the
two lipsΣ1 andΣ2 of the cut surface with respect to each other by a relative displacement (a
translationb—the so-called Burgers vector—and a rotationω), filling the void thus created
with perfect matter, or removing extra matter, then reintroducing the bonds between the
atoms or molecules acrossΣ1 andΣ2, and letting the system relax elastically. The result is
a singularity along the lineL; there is no singularity along the cuts ifb andω are operations
of symmetry of the perfect crystal. Dislocations of rotation are called disclinations, while
the term of dislocation is usually reserved to dislocations of translation; we follow this use.

A dislocation lineL‖ in a quasicrystal is a(d‖ − 2)-dimensional manifold which is the
intersection ofP‖ with a (d − 2)-dimensional dislocation hyperlineL of the hyperlattice
(Kl éman 1988, Kĺeman and Sommers 1991); the Burgers vector of the hyperdislocationL is
a hyperlattice vectorb, which splits naturally into two componentsb‖ andb⊥: b = b‖ +b⊥,
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(b‖ ⊂ P‖; b⊥ ⊂ P⊥). The cut surfaceΣ is (d − 1)-dimensional; its(d‖ − 1)-dimensional
intersection withP‖ will be denotedΣ‖. This is obviously a possible cut surface for a
dislocation lineL‖ in physical space, since it is bound byL‖.

Physically, it isL‖ which is given, as well asb, but we expect that some of the properties
of the dislocation in real space, in particular the phason field which it carries, will depend on
the entire hyperdislocation (L, b). We investigate now possible shapes ofL. This question
is indeed essential when employing the first method of deforming the QC†.

2.1. A specialized Volterra process:(L, b) in Ed

2.1.1. The shape ofL . It is usually assumed that the hyperlineL is a (d − 2)-dimensional
manifold which has the form of the following direct sum of manifolds:

L = L‖ ⊕ P⊥ (1)

i.e. L is a(d −2)-dimensional cylinder with generatrices parallel toP‖ and the cross-section
alongL‖. There is no restriction on the choice ofL‖, except that it must be a closed loop
or extend to infinity. But the specific choice made as regardsL confers to the dislocation
(L‖, b) some very special properties.

(i) Propertyα. The intersection ofL with P‖ does not depend on the relative positions
of Ed and P‖, so L‖ is invariable in shape and in positionwhen the hyperlatticeEd is
globally translated ind-space for fixedP‖.

(ii) Propertyβ. Thecore region ofL‖ is isotropic in shape, an important property from
an energetical point of view—see below for a discussion of this property and Kléman and
Sommers (1991).

(iii) Property γ . The notion ofglide of the dislocation makes sense. The(d − 1)-dim-
ensional ‘glide manifold’G defined byL and the lineB spanned byb, namely

G = L ⊕ B ≡ (L‖ ⊕ P⊥) ⊕ B ≡ L‖ ⊕ (P⊥ ⊕ B) ≡ L‖ ⊕ (P⊥ ⊕ B‖) ≡ L ⊕ B‖ (2)

does indeed intersect the physical spaceP‖ along a(d‖ − 1)-dimensional plane:

G‖ = L‖ ⊕ B‖ (3)

(dimG‖ = dimP‖ + dimG − d = d‖ − 1) which containsL‖ andb‖; B‖ is the infinite line
spanned byb‖. The third identity in equation (2), namelyP⊥ ⊕ B ≡ P⊥ ⊕ B‖, is obtained
easily from the property of associativity of the direct sum, plus the fact thatP⊥ contains
B⊥, the infinite line spanned byb⊥; henceP⊥ ⊕ B is factorized by the 2-plane containing
B‖ and B⊥. The physical glide manifold (called a glide ‘plane’ in the usual terminology)
G‖ of L‖ is preciselyL‖ ⊕ B‖, by definition.

Such a quasicrystallographic dislocation shows many similarities with a dislocation in
standard crystallography, because of its translational invariance alongP⊥. We make this
point precise now.

2.1.2. Construction of(L‖, b) in two steps. The dislocation (L, b) is translationally invariant
along P⊥, because of equation (1). Therefore, neglecting any effect of anisotropy inEd ,
the deformation field restricted toP‖ is the same in any realization of the physical space
(whenP‖ moves parallel to itself).

† In the method in which the deformation carried byL is restricted toP‖, which is thus transformed to a ‘space’P′
‖

endowed with torsion due to the presence of dislocations, and with curvature due to the presence of disclinations.
It is not necessary to stress the awkwardness of this process.
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(i) Step 1. We first build a dislocation in physical space, with elements (L‖, b‖), using a
classical Volterra process alongΣ‖. As a dislocation, (L‖, b‖) is imperfect(sinceb‖ is not
a repeat vector inP‖) and carries a stacking fault along the cut surfaceΣ‖; its orbit (L, b‖)
under the action of theP⊥ translation is a(d − 1)-dimensionalimperfectdislocation with
a stacking fault alongΣ in Ed .

Now, consider the state of strain inP‖ due to the presence of (L‖, b‖). One can obviously
perform the Volterra process for (L‖, b‖) while keepinguα = 0 (u is the d-dimensional
displacement vector,ui its components alongP‖ (i, j = 1, 2, . . . , d‖), uα its components
alongP⊥ (α, β = 1, 2, . . . , d⊥). Transposing to the language of the elasticity of plates, one
can say that theP‖-plate, which is infinitely thin along the directionsα, β, etc, and whose
d⊥-dimensional normals spanP⊥, is in a state of plane strain. Therefore the deformation
carried by (L‖, b‖) is phasonless. The stacking fault in physical space, alluded to above, is
a quite standard stacking fault with no relationship whatsoever to a phason field.

(ii) Step 2. Let us concentrate for a while on the hyperdislocation (L, b); theΣ stacking
fault does not persist in (L, b); it is dispersed away by a second Volterra process (L,
b⊥) which is of a pure screw dislocation type. It is easy to visualize how the transition
(L, b‖) → (L, b) occurs inEd : the Σ stacking fault dividesthe set of hyperlattice points
in Ed , and in its vicinity, into two populations, on either side of the cut surfaceΣ; let
us call themω1 andω2, and assume that the Volterra process consists in displacementsb‖
(step 1) andb⊥ (step 2) ofω1, for fixed ω2†. After the completion of step 1, those of the
lattice points which are neighbours acrossΣ form two sets,ω61 and ω62 translated one
with respect to the other by a vectorb‖ which is not a repeat vector of the lattice; the screw
dislocation adds a complementary translationb⊥ which brings back the two populations
into period-matching relative positions. The stacking fault disappears (the cut surface loses
any physical reality): the hyperdislocation (L, b) is perfect. This analysis is very similar to
that used for standard 3D crystals.

(iii) The same sequence of steps involved in the construction of (L, b) and now applied
to the construction of (L‖, b) does not tell us how the extension from (L‖, b‖) to (L‖, b)
proceeds. The question is indeed more involved, as we now describe.

The quasilattice pointsω‖1 (i.e. the restriction ofω1 to P‖) and ω‖2 (the restriction
of ω2 to P‖) are intersections of the atomic surfaces withP‖. ChooseΣ‖ such that it
does not contain any of those quasilattice points. Consider the quasilattice points which
are neighbours acrossΣ‖. The atomic surfaces carried byω‖1 are moved alongP⊥ by an
amountb⊥; this process brings some lattice points into ‘good’ positions with respect to
ω‖2, while some others disappear, since the corresponding atomic surfaces do not intersect
P‖ any longer, and are replaced by another neighbouring atomic surface which intersects
P‖ at a site which corresponds precisely to a phason shift (figure 2).Phason shifts are not
topological objects; they can easily annihilate—this is visible figure 2—and are made up of
two nearest-neighbouringmismatchesof opposite signs; now two adjoining phason shifts
which have a common edge (figure 2(c)) also amount to two mismatches of opposite signs,
in positions of next-nearest neighbours, since the common edge carries two mismatches
of opposite signs which annihilate.Mismatches are topological objects, in the sense that

† One might argue over whether one may divide the set of all atomic surfaces into two populations only, above
and belowΣ (no atomic surfaces inΣ). In fact the same problem arises in 3D crystals; it is always possible,
in this latter case, at the cost of some distortion of the dislocation line and of its cut surface whose amplitude
is not larger than the lattice parameter, to make the cut surface before completion of the Volterra process avoid
any vertex of the Bravais lattice. The same is true here, although the intersection of an atomic surfaceS with
Σ is generically of dimensionality(d⊥ − 1), because the size of the atomic surfaces is of the order of the repeat
distance inEd .
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one given mismatch can get isolated, far from another mismatch of opposite sign, if ever
a large number of phason shifts separate them. Note also that the sites in shifted positions
are intersections of sets of neighbouring atomic surfaces attached to neighbouring vertices
in Ed which can be partitioned into (d‖ − 1)-dimensional hyperplanar pieces; but it is only
the boundaries of these sets which constitute a mismatch, of dimensionalityd‖ − 2, i.e. of
the same dimensionality as the dislocation.

Figure 2. Phason shifts and mismatches illustrated in the Penrose–De Bruijn case: (a) a perfect
sequence of hexagonal patterns, obeying matching rules; (b) a single phason shift and the two
opposite mismatches which it carries; by mutual annihilation of the mismatches, the phason shift
disappears; (c) two neighbouring phason shifts and the two mismatches at the boundaries of the
domain affected by the phason shifts.

2.1.3. The landscape of mismatches.The mismatches result from a special reshuffling (the
phason shifts) of the atoms in the physical spaceP‖, by a cooperative movement varying
from one point to another in a complex way which remains to be analysed; a possible analogy
is with the ‘synchro-shear’ dislocation loops of Kronberg (see, for instance, Amelinckx
1979), which sweep the surface of the stacking fault coherently in standard crystals with
complex structures, in order to relocate some atomstoo badly displaced by the imperfect
Burgers glide. In order to illustrate what we have in mind, remember as an example that in
corundum (Amelinckx 1979), the stacking fault, which affects the fcc lattice of the oxygen
atoms, brings the small Al atoms into ‘bad’ tetrahedral sites, while the synchro-shear loops
transform those local ‘bad’ tetrahedral sites into ‘good’ octahedral sites, by a process which
is clearly analogous to a phason shift—which transforms a ‘bad’ empty site (or a bad
analytical continuation of the intersection of the atomic surface withP‖) into a ‘good’ site.
As a consequence, this suggests studying in more detail the nature of those sites which have
suffered shifts in QCs, before and after the introduction of the (L, b⊥) dislocation.

We shall refer to the set of mismatches as a ‘landscape’ seen by the dislocation (see
Kl éman and Sommers (1991) for a 2D illustration). The perpendicular componentb⊥
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of the complete Burgers vectorb therefore measures the phason singularity content (the
mismatches) carried by the dislocation; but it is clear that the detailed structure of the
landscape depends in an intrinsic way on the phase ofP‖, i.e. its relative position inEd .

2.1.4. Relative movement of two dislocations.We consider now the problem of two
dislocation linesL1 and L2 of complete Burgers vectorsb1 and b2, crossing inP‖ or
circumnavigating one another.

When crossing occurs, the manifold common to the linesL1 and L2 is P⊥ itself. In
the physical spaceP‖, the result is a ‘jog’ very similar to the jogs analysed in standard
crystals (see Kĺeman and Sommers 1991). The jog onL1‖ is b2‖; that onL2‖ is b1‖. This
modification of the shape of the line modifies the elastic (phonon) field accordingly. By the
same process of crossing, the jog onL1 (in Ed ) is b2, i.e. it has a componentb2⊥ which
pushes a part of the lineL1 on one side of the jog relative to that on the other side by
this quantity; but sinceb2⊥ ∈ P⊥, which itself belongs toL1, this has no effect on the
‘phason’ field carried by the dislocation, except along a strip contour of widthb2‖, since
the cut surface has been translated by the quantityb2‖: the landscape is not modified after
the crossing has occurred.

The analysis forcircumnavigationis very similar. We start first with a remark regarding
standard crystals, which is of some importance below. The natural definition of the path
traversed by a dislocation lineL2 of Burgers vectorb2 circumnavigating a fixed dislocation
line L1 and of Burgers vectorb1 is as follows: during its motion,L2 experiences glide
and climb;glide, which is conservative, does not affect the positioning of the atoms, which
stay in place; but in contrast,climb is not conservative and the atoms diffuse away from
or towards the dislocation: the net amount of diffusion is zero whenL2 has moved by a
quantity±b1 in the reference frame ofL1, because each direction is then traversed by equal
amounts back and forth, independently of the Burgers vectorb2 of the moving dislocation.
The sign depends on whether the motion is clockwise or anticlockwise. In other words, a
complete circumnavigation does not imply a closed traversed path in the real crystal, but
does imply a closed path in the mapping of the path in a perfect reference crystal.

Similarly, in the Ed lattice, after circumnavigation, the two dislocation lines are in
different relative positions,±b2 for the line L1, ±b1 for the line L2. As above, this dis-
placement of the lines does not change their landscape, except on a contour strip of width
±|b2| along the lineL1, ±|b1| along the lineL2.

2.2. A more generic Volterra process:(L, b) in Ed

The generic case, i.e. whenL does not containP⊥ as a factor in the direct sum of equation
(1), yields new properties. We first consider in some detail an intermediary case.

Let us drop propertyα but not propertiesβ and γ , which are of more physical
significance than propertyα. Start with propertyγ alone: a glide plane still exists if
G‖ containsB‖. By definition, we haveG‖ = L‖ ⊕B‖. It can be shown that this is satisfied
if L contains the infinite lineB⊥ as a factor in the cartesian product, i.e. ifL has the form

L = L‖ ⊕ B⊥ ⊕ σ (4)

whereσ is a (d⊥ − 1)-dimensional manifold living inP⊥ in a hyperplane perpendicular to
B⊥. In effect, we have by definition

G = L‖ ⊕ B⊥ ⊕ B‖ ⊕ σ ≡ (L‖ ⊕ B⊥ ⊕ σ) ⊕ B‖ (5)

and henceG‖ = L‖ ⊕ B‖.
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Note that, ifσ is a (d⊥ −1)-plane, one returns to the previous case whereB⊥ ⊕σ = P⊥.
The reciprocal theorem is true (see the appendix), i.e. propertyγ alone (the existence

of a glide plane in physical space) yields (a)G = L‖ ⊕ B⊥ ⊕ B‖ ⊕ σ(M‖), whereσ is
a manifold which lives inP⊥ in a hyperplane perpendicular toB⊥ and is allowed to vary
along L‖ (M‖ ∈ L‖); it also yields (b) a core that is isotropic in shape (see the appendix).
For the sake of simplicity, we takeσ as a constant manifold in the following.

As a consequence the dislocation line is translationally invariant alongb⊥, as above, but
not along other directions inP⊥, generically. This geometry yields new properties when
consideringtwo dislocations (L1, b1) and (L2, b2).

Note first that theb1⊥ component ofb1 belongs to the dislocation hyperline; hence
any motion of the hyperline alongb1⊥ leaves the geometry of the hyperline invariant as a
whole and invariant with respect toP‖. Therefore the effect on a dislocation (L1, b1) of the
complete circumnavigation of a dislocation (L2, b2) about it amounts to nil ifb2⊥ = b1⊥
(which yieldsb2‖ = b1‖, and thereforeb2 = b1): the translational helical symmetry of (L1,
b1) is not broken by the symmetry of (L2, b1). Contrariwise, whenb2⊥ 6= b1⊥ (which
entails thatb2⊥ andb1⊥ are not parallel), a point A belonging toL1 is transported after the
circumnavigation ofL2 about it to a point A′ = A + b2⊥ which does not belong toL1, and
the entire hyperline is displaced to a new positionL′

1. The landscape has been modified in
a fundamental manner, because the dislocation hyperlineL1 has been translated inEd ; note
that the translationb2⊥ does not affect the position of its intersectionL1‖, but it affects the
uα-components alongP⊥ of the d-dimensional displacement vectorb, and hence it affects
the phason singularity field carried byL1‖.

Note that the same property of non-commutativity implies that the intersection of
dislocations in relative motion is not so simple as in standard solids: the fact that the
hyperlinesL1 and L2 are not parallel outsideP‖ yields intersections in the physical space
which cannot be analysed as jogs or kinks. The above arguments, supplemented by the
topological analysis below, suggest that the topological obstruction to crossing (i.e. the
non-commutativity) results in the formation of a singularity of the phason field joining the
points of contact of the two lines after their separation.

2.3. The generic case

The above detailed discussion makes easy the formulation of general statements for the
generic case. A complete circumnavigation of a dislocation (L2‖, b2) in physical space
about another one (L1‖, b1) has the effect of translatingL1 to L′

1 = L1 + b2, and hence
modifying the phonon as well as the phason field (including its singularities) carried byL1‖.
The modification of the phonon field is due to the displacementb2‖ of the cut surfaceΣ‖,
and hence of the lineL1‖. The modification of the phason field is due to the displacement
b2⊥ of the hyperlineL1.

An obvious generalization of the above statement is when one of the defects (or both)
are disclinations: a mixed defect (L2, ω2, b2) circumnavigating a mixed defect (L1, ω1, b1)
displacesL1 by a rotationω2 and a translationb2, and consequently changes the landscape
that it carries.

The change of landscape depends on the circumnavigating defect and on the shape of
the defect hyperline; this points towards a possible experimental study of the shape of the
defect inEd .

Finally, the same type of arguments apply,mutatis mutandis, to the question of the
intersection of two defects. In all cases the existence of non-commutativity of the physical
space defects in movement boils down to commutative geometrical properties in the high-
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dimensional space. A description of defects limited to the physical space observables
introduces topological concepts in a natural way, as we shall see in section 3.

2.4. Glide with and without the presence of complete or incomplete dislocations

As discussed above, the notion of glide makes sense with the above construction and
definition of L. If the creation of a dislocation in physical space does not involve the
second part of the Volterra process, for example at low temperature when the reshuffling is
not thermally activated, then one expects that dislocations (L‖, b‖) will glide in planes of
high density (twofold, threefold or fivefold planes), in which the stacking fault would lie.
Such imperfect dislocations have been observed in AlLiCu icosahedral alloys (Yu DaPeng
1993, Balucet al 1995).

Note finally that, sinceb‖ is an irrational projection of a lattice vectorb in Ed , it can
be as close as one wishes to any vectorb‖ fixed in advance, and hence as small as one
wishes. From that point of view, the displacement of an incomplete dislocation (L‖, b‖)
on its glide plane in a QC is very much akin to the glide of a dislocation in a metglass,
whose Burgers vector is not quantified (Friedel 1995a). On the other hand, the addition of
a landscape of mismatches to (L‖, b‖), making the dislocation complete—(L‖, b)—should
stabilize the lineL‖ in some sense (Friedel 1995b) and therefore probably contribute to a
decrease in mobility.

3. Topological classification of defects

The above results can be expressed in the language of the topological theory of defects. For
simplicity, we shall have in mind, as an example, the octagonal tiling (Socolar 1990), made
up of two types of rhombus, withd‖ = 2, d⊥ = 2. The acceptance domainA⊥ is a regular
octagon. The octagonal case bears some physical interest, since octagonal QCs do exist in
nature (Kuo 1990). It has also been handled in some detail in the important paper of Frenkel
et al (1986). This example extends without much difficulty to the duodecagonal and the
icosahedral tilings; however, some care should be taken with the decagonal (Penrose–De
Bruijn) tiling. For more details about this extension, see the remarks at the end of this
section.

Consider a deformed QC, with defects. Let0 be an oriented loop, entirely drawn in
the ‘good’ quasicrystal—good in the sense that it is possible to recognize the liftMd in Ed

of any vertexM belonging to the QC. Therefore0 lifts in Ed along a path0d , such that
each vertex encountered inside the QC goes to the vertex which carries the corresponding
atomic surface inEd and, by extrapolating between vertices, each point inside a 2-face goes
to the corresponding point in some 2-face inEd , and each point inside a rhombohedron
goes to the corresponding point inside some 3-face inEd . Note that this mapping does
not require that the matching rules be obeyed along0. If 0d is an open path, its closure
failure b necessarily joins two equivalent points in the hyperlattice, and0, considered as a
oriented circuit embedded inEd , is simply a Burgers circuit which encloses a dislocation
line L of the Burgers vectorb in the hyperlattice;L intersects thed‖-dimensional physical
spaceP‖ along some lineL‖. Such defects are therefore classified by the Abelian group
of translational symmetries of the hyperlattice, or equivalently by the fundamental group
π1(Td) of the d-dimensional torus (i.e. the unit hypercell with(d − 1)-dimensional faces
identified point by point).

Td is the order parameter space of the hypercrystal (restricted to the translational part
of the order parameter), but the order parameter space of the QC itself is certainly smaller,
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(a)

(b)

Figure 3. The order parameter space for an octagonal QC: (a) its planar developmentA⊥
as an octagon with opposite sides identified; the octagon is the projection of the 4-cube onto
P⊥; (b) its representationU as a closed manifold (a pretzel with two handles; see Hilbert and
Cohn-Vossen 1952).

and embeddable inTd . Since any pointM⊥ ∈ P⊥ yields a unique realization of the QC in a
d‖-plane,P‖ (M⊥ is the intersection ofP‖ with P⊥), nothing (but see below for an important
caveat) is lost by replacingTd by the projection of the hypercellCd ontoP⊥—this projection
is preciselyA⊥—with (d⊥ − 1)-dimensional faces identified according to the identification
of the hypercellCd . Call the manifold obtained by performing this identificationU. In
the octagonal caseU is a 2D torus with two handles (figure 3). Any two points inA⊥
(the octagon) equivalent in this identification are separated by a vectorAi⊥ which is the
projection of a vectorAi in Ed which joins two points on the hypercell equivalent in a
‘silhouetting’ translation (in the language of Frenkelet al). TheAi⊥ generate a group which
has the following structure, discussed in Coxeter and Moser’s classic book (Coxeter and
Moser 1972). We follow their notation (except for the introduction of the subscript ‘⊥’.)

The four-dimensional hypercubeC4 (this is the octagonal case) projects ontoP⊥ along a
regular octagon, whose directed edgesa1, a2, a3 anda4 are the projections of the hypercube
edgesei (i = 1, 2, 3, 4). The translationA5 = −A1 in Td bringse1 ontoe1, on the opposite
silhouetting edge of the hypercube, etc. Consequently,A5⊥ = −A1⊥ in P⊥ bringsa1 onto
a1 on the opposite edge of the octagon, etc. The group of translations represented by the
ei yield a group represented by theai ; clearly, this group generates the Burgers vectorsb
alluded to in section 2 of this article:b = ∑

i niei . We can equally well consider the group
represented by theAi , since these vectors form a complete basis:b = ∑

i miAi . Now, call
the generators of the ‘projected’ abstract groupAi⊥; as shown by Coxeter and Moser, the
group generated by the four generatorsAi⊥ is no longer Abelian and obeys the relation

r ≡ A1⊥A2⊥A3⊥A4⊥A−1
1⊥A−1

2⊥A−1
3⊥A−1

4⊥ = 1. (6)
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Define new generators

a1 = A2⊥A3⊥A4⊥ a2 = A5⊥A6⊥A7⊥
a3 = A8⊥A1⊥A2⊥ a4 = A3⊥A4⊥A5⊥.

(7)

Their effect is clearly a translation alonga1, a2, a3 anda4. Note that there is not just one
choice (e.g.a1 = A3⊥A2⊥A4⊥, etc, would fit equally), but ours has the advantage of putting
in place of equation (6) another one which has a very symmetric form, and corresponds to
a natural order on the octagon:

r ≡ a1a2a3a4a
−1
1 a−1

2 a−1
3 a−1

4 = 1. (8)

The important issue as regards the choice ofU as the order parameter space of the QC
is that now the fundamental groupπ1(U) generated by theAi⊥ (or equivalently bya1, a2, a3

anda4), and whose elements are oriented closed loops inU, is no longer Abelian. Hence
π1(U) is the group generated by theai defined above, obeying the relation of equation (7);
it is also the group of hyperbolic translations of the hyperbolic plane tiled with octagons
(cf. Coxeter and Moser 1972), the{8, 8} tessellation in the Schläfli–Coxeter notation. The
complete symmetry group of this tessellation, denoted [8, 8], is generated by reflections in
the edges of the fundamental triangle ONZ of the octagon.π1(U) is an invariant subgroup
(of index 16) of [8, 8]. In crystallographic terms, it is useful to consider [8, 8] as a
curved crystal; it carries all of the symmetries of the quasicrystal—not only the octagonal
symmetries, but also its hidden translational symmetries. As an object of algebraic topology,
it is the universal coverŨ of U; it has the same relationship withU that the simple cubic
Bravais lattice has with the 3-torusT3 opened out under the shape of a cube; the simple
cubic lattice is the universal cover of the 3-torus.

The elements ofπ1(U) classify the defects in the QC; according to the way in which
we have constructed them—by projection of theAi—these defects are akin to dislocations,
but non-Abelian, a property reminiscent of what we have obtained by the naive Volterra
construction. We can go further in the comparison between the two approaches; in the
Volterra process approach, we showed that the landscape carried by a moving defect was
dependent on the path followed, and in particular was modified in a fundamental way if
the defect performs a complete circumnavigation about another one. On the other hand it
is a result of the topological theory of defects that a defect of classg ∈ π1(U) is turned
into a defect of the homotopy classhgh−1 (h ∈ π1(U)) after it has achieved a complete
turn abouth (Kl éman 1977, Trebin 1984); in other words, one gets in this waya different
realization of the same defect, represented inπ1(U) by a different element but belonging
to the same conjugacy class asg, if the classesh andg do not commute. This is exactly
what we got above, which makes it natural to interpret the non-commutativity ofπ1(U)
in terms of mismatches. More precisely, letcij = aiaja

−1
i a−1

j be a commutator of the
fundamental groupπ1(U), and letN(cij ) be the commutator subgroup generated by thecij ;

all of the elements ofN(cij ) are of the form. . . a
li
i a

lj
j a

lk
k . . . a

mi

i a
mj

j a
mk

k . . . a
ni

i a
nj

j a
nk

k . . . such
that . . . + li + mi + ni + . . . = 0. It is easy to show thatN(cij ) is an invariant subgroup of
π1(U); the quotient group

H1(U) = π1(U)/N(cij ) (9)

is the largest Abelian subgroup ofπ1(U); it has the representation

H1(U) = 〈a1,a2,a3,a4; aiaja
−1
i a−1

j = 1〉 (10)

that is

H1(U) = Z4 (11)
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as expected for the group of dislocations, which we retrieve with their ordinary significance.
Any element ofH1(U) is in one-to-one correspondence with a conjugacy class inπ1(U).
Take for example the conjugacy class ofak; its elements are of the form

aiaka
−1
i = aiaka

−1
i a−1

k ak = cikak (12)

and are homomorphic with the same elementak in H1(U): they all represent the same
complete dislocation. We also understand this in the light of our former discussion of
the Volterra process. We can therefore interpret the commutatorcik as the class of a defect
which has been added toL by a rotation about a defect of homotopy classai ; were the group
Abelian, the class of this defect would be the null class. In fact,cik is precisely the class
of the defect which joins two dislocations after they have crossed. Such commutators are
therefore related to the set of mismatches (the landscape) surrounding a complete dislocation.
For the sake of completeness, note that the classification ofindividual mismatches has also
been considered (Misirpashaev 1995).

The elements ofH1(U) are isomorphic with the elements ofπ1(Td ), i.e. with the whole
set of dislocations of the high-dimensional latticeEd . This comes from the fact that the
vector basisai is complete, so any lattice vector, however small its projection inA⊥, is a
linear combination of theai .

Caveat: in fact, the situation is somewhat more complicated, becauseU is anextended
order parameter space, in the sense that infinitely many points represent the same realization
of the QC, but with the exception of some global translation alongP‖. It is indeed possible
to find a projectionb⊥ in P⊥ of somed-dimensional vectorb whose modulus|b⊥| is as
close as one wishes to any value (and in particular as small as one wishes; think of a very
long b-vector nearly parallel toP‖), and whose extremities can therefore both be inA⊥. A
Burgers circuit surrounding the corresponding dislocation would map onto an open circuit
in Ed ; its closure failure would correctly measure a Burgers vectorb = ∑

i=1,...,d niei , but
its projectionb⊥ = ∑

i=1,...,d niai in A⊥ would not be recognized as joining equivalent
points inU. In fact, because of the way in which we have constructed the order parameter
space, these two points are not equivalent inU. We call those dislocations which are not
visible as loops inU inner defects, because for each of them the value of|b⊥| is smaller
than the span of the acceptance domain, and, correlating with this, the physical Burgers
vector modulus|b‖| is large. The way to resolve this difficulty is as follows.

Consider the case where the quasicrystal is invariant under inflation. Then such inner
vectors belong to some superquasicrystal of the quasicrystal lattice, which can be defined in
a precise way, as follows. Introduce the star of all of the vectorsb⊥ι which form the orbit
of b⊥ under the action of the quasicrystalline point group inP⊥; after the manner of Olami
and Alexander (1988), introduce the intersectionA⊥ι = A⊥(0) ∩ A⊥(b⊥ι), which is the set
of the vertices which have a neighbouring vertex at a distance equal to or larger thanb‖ι.
The intersection

A⊥(b⊥) =
⋂

ι

A⊥ι

of all of the sets forming the orbit ofA⊥ι defines an acceptance domain which is deflated
with respect toA⊥ by some factor, and such thatb⊥ joins identifiable points onA⊥,
on opposite boundaries. Identifying these boundaries yields an order parameter spaceU⊥,
whose (non-Abelian) fundamental groupπ1(U⊥) classifies the dislocations (and disvections)
of a ‘quasisuperstructure’, for which all of the above arguments can be repeated.

Extension to other quasicrystalline symmetries.We have shown elsewhere (Kléman
1990, 1992) that the universal cover of the acceptance domains of the pentagonal and the
icosahedral QCs have properties similar to the above, i.e. infinite groups of translations
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with remarkable non-commutative properties, and we have interpreted the commutators in
terms of mismatches carried by the complete dislocations. First, notice that the discussion
of the first section of this paper is general, and applies to any quasicrystalline symmetry;
therefore the effects of non-commutativity on the dislocations, displayed by Volterra process
considerations, are still true. Second, the acceptance domain of any type of quasicrystal,
in the d-dimensional description, does not tileP⊥; furthermore the projection of the
hypercube always provides equivalence relations between opposite edges, faces, etc, since
the hypercube has equivalent opposite boundaries, due to the periodicity inEd ; therefore,
an interpretation of the acceptance domain as a closed manifoldU playing the role of
an extended order parameter space is possible; furthermore, by gluing infinitely many
acceptance domainsA⊥ along equivalent faces, one obtains a ‘crystal’, which is not flat
since it does not tileP⊥; its translational properties are therefore non-Abelian, etc.

A question of terminology.E Cartan (1963) has introduced the termtransvections—
which generalize the concept of translations—for the displacements in a hyperbolic plane
which are represented by commutators of the group of displacements which leave the
hyperbolic plane invariant—remember that theai introduced above for the octagonal QC are
translations in ahyperboliccrystal, the universal cover̃U of U. The complete dislocations
(L‖, b) in a QC are very special objects, since, through the presence of mismatches, they
break the symmetries of this hyperbolic crystal. In that sense the hyperbolic crystal thus
constructed is the true crystalline representative of the QC, one of its advantages being that
it has the same dimensionality as the QC. All of these properties point to the necessity
of using a specific substantive for the ‘dislocations’ of the type (L‖, b), which we have
up to now calledcomplete dislocationsin order to differentiate them from the imperfect
dislocations (L‖, b‖); although imperfect, (L‖, b‖) is a dislocation in the usual meaning of
the term, while (L‖, b) is not. In a former paper we suggested calling the complementary
(L‖, b⊥), i.e. the landscape—an object, made up of many partly independent parts—which
transforms the imperfect dislocation into a complete one, a disvection, in honour of Cartan.
However, the noun ‘mismatches’ (for the parts) fits them quite properly; on the other hand
complete dislocations (L‖, b) have been observed and their total Burgers vectors measured.
Therefore we propose to reserve the namedisvectionfor a ‘complete dislocation’ (L‖, b) in
a quasicrystal, an object which after all is not a dislocation in the usual sense of the term.
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Appendix

G ≡ L ⊕ B is the glide manifold inEd ; we can write it as a union of manifolds carried by
G‖: hence

G =
⋃

r ∈ G‖

g(r)

whereg(r) ⊂ P⊥ is a d⊥-dimensional manifold andr a running point inG‖. Extracting
B‖ from G‖, we can alternatively write

G =
⋃

r ∈ L‖

{B‖ ⊕ g(r)}. (A1)
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Since

L =
⋃

r ∈ L‖

λ(r)

whereλ(r) ⊂ P⊥ is a d⊥-dimensional manifold, we also have

G =
⋃

r ∈ L‖

{B ⊕ λ(r)}. (A2)

ThereforeΓ(r) = {B‖ ⊕g(r)} andΛ(r) = {B ⊕λ(r)} generate the same manifoldG, when
translated alongL‖. Γ(r) is a ruled manifold (alongB‖); henceΛ(r) itself must be ruled
along B‖, which is possible only ifλ(r) is ruled alongB⊥, because the cartesian product
B ⊕ B⊥ (which is alsoB‖ ⊕ B⊥) then appears inΛ(r). Hence,

λ(r) = B⊥ ⊕ σ(r) (A3)

and

L =
⋃

r ∈ L‖

{B⊥ ⊕ σ(r)}. (A4)

Let us now assume for a while thatσ(r) is a manifold which has non-zero dimensional
components which do not belong toP⊥. Now, take a running pointr on L‖. Using the
same argument as in Kléman and Sommers (1991), the atomic surfacesS attached toσ(r)

intersectP‖ along a singular regionL′
‖ which has the shape of a 2D singular furrow aboutr

and therefore has the disadvantage of extending the core region geometrically. None of the
other atomic surfaces attached to the components of{B⊥ ⊕σ(r)} in P⊥ at pointr yield any
intersection withP‖ other thanr itself. Hence in the generic case we must takeσ(r) ⊂ P⊥
in order to preserve asmall and locallyisotropic core. The precise shape ofσ(r) probably
depends onb, and shows up possibly quasicrystalline symmetries. The intersection ofL
with P⊥ must containB⊥, in order to satisfy conditionsβ andγ .
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Kl éman M 1977J. Physique Lett.38 L199
——1988 Proc. ILL /Codest Workshop on Quasi-crystalline Materialsed C Janot and J M Dubois (Singapore:

World Scientific)
——1990J. Physique51 2431
——1992J. PhysiqueI 2 69
——1995Czech J. Phys.45 935
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