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Abstract. Completedislocations in quasicrystals are intersections of dislocations in a high-
dimensional lattice with an irrational cut that represents the physical space. We study the
properties which proceed from that definition, either by methods relevant to the Volterra process,
or by topological methodsThe Volterra process applies in the high-dimensional latiice rather

trivial way, but its restriction to the quasicrystal introduces very unusual geometrical properties,
described in terms gfhasondeformations and of their singularities (mismatches). For example,
the motion of a defect is generically non-commutative: the ‘landscape’ of mismatches carried
by complete dislocations or disclinations in motion depends on the path which is followed by
the defect between two positions, when two such paths surround a defect. The same type of
argument appliesutatis mutandisto the question of the intersection of two defects. Other
properties, of a more metallurgical nature, ensue from that use of the Volterra process, like the
existence of stacking faults in QCs, bound by incomplete dislocations, and the relationship
between mismatches and the reshuffling of atoms. Now, if one wishes to describe these
remarkable properties with the sole use of physical observables (i.e. without mentioning the
high-dimensional lattice), it appears that the natural language is the languagetopdiegical

theory of defects in the quasilatticdn particular it is shown that the group which classifies
the dislocations is non-Abelian, a property in a direct relationship with the above-mentioned
non-commutativity. We give the name disvectionsto complete dislocations, because of their
relationship with Cartan’s transvections, which are translations with non-Abelian characters in
a hyperbolic space.

1. Introduction

The question of the nature of topological defects in quasicrystals (QCs) has already been
addressed by several authors: in particular it has been shown that the concept of dislocation
(Levineet al 1985, KEmanet al 1986) still makes sense (as does the concept of disclination;
Bohsung and Trebin 1989), although there are no repeat lattice vectors in a QC. And
indeed their existence is not in any doubt, since dislocations have been observed in QCs
by electron microscopy techniques, and their Burgers vectors measured with the help of
diffraction contrast theory (Wollgarteat al 1991, Wang and Dai 1993). However, their

true nature is somewhat more involved than in standard crystals. As the theory shows,
‘perfect’ dislocations in QCs are indeed always attended by other types of defect, usually
called phason defects, or phason singularities—in the sense that they are the outcome of the
phaseshifts of the atomic configurations when the physical sgacés moved parallel to

itself through the high-dimensional spaRé—or mismatches. These mismatches continue
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to be mysterious, in spite of the effort devoted to understanding their nature. However,
dislocations and their accompanying sets of mismatches have been classified, making use of
the topological theory of defects (&ihan 1990, 1992). The same approach is reconsidered

in the second section of this paper, in a presentation which is more straightforward than
in our former publications. But the main purpose of this paper is different: we want
to tackle the classification problem keeping as close as possible to another approach, the
standard \olterra process and its implications (e.g. the concepts of stacking fault, and of
glide plane—in brief, all of those concepts that have led to the richness of materials science);
this methodology not only has the advantage of providing a physical interpretation for the
abstractions of the topological theory—this is why its presentation has gained in clarity—but
also it is complementary to it, since those concepts would not appear naturally, were the
topological theory our only guide.

Hence, section 2 is a description in terms of Volterra concepts of the unusual
characteristics of the dislocations of the quasicrystalline lattice in the physical Bpace
conceived as intersections of the (hyper-) dislocations of a high-dimensional crystalline
lattice E? in R? with the physical space. The concepts that we introduce in this section are
those of the stacking fault, reshuffling of atoms, and the non-commutativity of dislocation
movement, this latter being precisely the effect of the presence of fields of mismatches.
Some of these results have already been published irPthEessor Kroupa Festschrift
(KIeman 1995). Section 3 expresses the same subject in terms of the topological theory of
defects, which helps to nicely classify defects and in particular gives a firm setting for the
concept of non-commutativity. This section of the paper, although less original, contains
new views arising from the analysis that precedes it.

We shall assume in the following that the reader has some familiarity with the two
approaches to the classification of defects—on one hand the \olterra classification of
dislocations (Friedel 1964), and on the other hand the topological theory of defects, to which
many reviews have been devoted (Mermin 1979, Michel 1980), and which is indispensable
when defects other than dislocations are present. We shall also assume some familiarity
with the essentials of the high-dimensional description of quasicrystals (for a bibliography
and a selection of articles on quasicrystals, see Steinhardt and Ostlund (1987), DiVincenzo
and Steinhardt (1991)); we shall use the definition of a QC as a set of vertices determined by
the intersections of the so-called ‘atomic surfacg@stith the physical spacE; (Bak 1985).

The deformations of the physical space will be defined as resulting from deformations in
the high-dimensional space, that have the effect of modifying the intersections of the atomic
surfaces withP ), which is assumed fixed in the laboratory frame

Generically, thed, -dimensional atomic surfaces which we consider are manifolds
carried by the vertices of&dimensional hypercubic lattide?, for which they play the same
role as atoms play in a 3D crystal; as such, the atomic surfaces are undeformable entities.
P, is ad,-dimensional linear subset of the euclidean sftavhere the hyperlattice ‘lives’,
and cutsR? along an irrational direction ifc?. ThereforeP| contains at most one vertex
of E4. Thed, -dimensional complementary spakeg is such that we havR? = P, @ P,
the direct sum; there is therefore a copyRof perpendicular td®; at any of its points. We
also introduce the so-called acceptance domainwhich is the projection o, of a unit
hypercube having the size and the orientation of a hypercube belongifg(see figure 1).

1 Another method for deforming the QC consists in keeping the high-dimensional space undeformed, and
deformingP accordingly, to get the same result. In that case one has to make a distinction between the deformed
dj-dimensional space (call Iﬂl), which obviously can no longer play the role of a ‘physical space’, and the
physical spacesensu strictp the undeformed®;. This latter method lacks generality, but might help one to
visualize the deformation in physical space.
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Figure 1. The QC is the intersection of the atomic surfaces carried by the vertices of the
hyperlattice with ad;-dimensional irrational cuP of E? (heredj = 1,d = 2, tana = t~%;

7 = (1+ +/5)/2 is the Golden Ratio). In this picture, the atomic surfaces are supposed to be
segments of line congruent to the acceptance domainThe lattice is globally invariant under

a shift of the cut plane alonB | ; this is the phase invariance.

It will play the role of an extended parameter space in the second section of this paper, and
will under no circumstances be given the meaning that it has in the well-known alternative

definition of a QC, the cut-and-project method (Duneau and Katz 1985, Katz and Duneau
1985).

2. Dislocations inR? and their intersections with P,

We recall that the definition of a dislocation in a three-dimensional crystal (Friedel 1964)

requires two ingredients, the line along which the symmetry is broken, and the broken

symmetry, namely a translatiob or a rotationw, or both. The Volterra process is a

gedankenexperiment aimed at creating such an object starting from the perfect ordered

medium, and consists in introducing a ‘cut surfaB2bound by the lind_, displacing the

two lips 31 andX; of the cut surface with respect to each other by a relative displacement (a

translationb—the so-called Burgers vector—and a rotatio) filling the void thus created

with perfect matter, or removing extra matter, then reintroducing the bonds between the

atoms or molecules acro®% andX,, and letting the system relax elastically. The result is

a singularity along the ling; there is no singularity along the cutshifandw are operations

of symmetry of the perfect crystal. Dislocations of rotation are called disclinations, while

the term of dislocation is usually reserved to dislocations of translation; we follow this use.
A dislocation lineL in a quasicrystal is &, — 2)-dimensional manifold which is the

intersection ofP; with a (d — 2)-dimensional dislocation hyperline of the hyperlattice

(Kléman 1988, Kdman and Sommers 1991); the Burgers vector of the hyperdislodat®on

a hyperlattice vectob, which splits naturally into two componentis andb,: b= b;+b,,
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(by € Py; by C P1). The cut surfac& is (d — 1)-dimensional; its(d; — 1)-dimensional
intersection withP; will be denotedX;. This is obviously a possible cut surface for a
dislocation lineL in physical space, since it is bound hy.

Physically, it isL which is given, as well ab, but we expect that some of the properties
of the dislocation in real space, in particular the phason field which it carries, will depend on
the entire hyperdislocatiorL( ). We investigate now possible shaped ofThis question
is indeed essential when employing the first method of deforming thi QC

2.1. A specialized Volterra procesd:, b) in E¢

2.1.1. The shape &f. It is usually assumed that the hyperlihds a (d — 2)-dimensional
manifold which has the form of the following direct sum of manifolds:

L=L||@PJ_ (1)

i.e.L is a(d —2)-dimensional cylinder with generatrices paralleRpand the cross-section

alongL. There is no restriction on the choice lof, except that it must be a closed loop
or extend to infinity. But the specific choice made as regardenfers to the dislocation

(L, b) some very special properties.

(i) Propertyx. The intersection ot with P, does not depend on the relative positions
of E¢ and P, so L, is invariable in shape and in positiowhen the hyperlattic&? is
globally translated ini-space for fixedP,.

(if) Property 8. Thecore region ofL is isotropic in shape, an important property from
an energetical point of view—see below for a discussion of this property a@whddl and
Sommers (1991).

(iif) Property y. The notion ofglide of the dislocation makes sense. Ttke— 1)-dim-
ensional ‘glide manifold'G defined byL and the lineB spanned by, namely

G:L@BE(L”@PL)@BELH@(PL@B)ELH@(PL@B”)EL@BH (2)
does indeed intersect the physical spRgealong a(d; — 1)-dimensional plane:
Gy =L, o8By (3)

(dimG = dimP; +dimG — d = d; — 1) which containd_; andb;; B is the infinite line
spanned by,. The third identity in equation (2), nameB, & B = P, & B, is obtained
easily from the property of associativity of the direct sum, plus the factRhatontains
B, the infinite line spanned by, ; henceP, & B is factorized by the 2-plane containing
B, andB,. The physical glide manifold (called a glide ‘plane’ in the usual terminology)
Gy of L, is preciselyL; @ By, by definition.

Such a quasicrystallographic dislocation shows many similarities with a dislocation in
standard crystallography, because of its translational invariance &ong\Ve make this
point precise now.

2.1.2. Construction afL, b) in two steps. The dislocationl(, b) is translationally invariant
along P, because of equation (1). Therefore, neglecting any effect of anisotrog§,in
the deformation field restricted 8, is the same in any realization of the physical space
(whenP; moves parallel to itself).

1 In the method in which the deformation carriedlbys restricted tdP), which is thus transformed to a ‘spac@l’
endowed with torsion due to the presence of dislocations, and with curvature due to the presence of disclinations.

It is not necessary to stress the awkwardness of this process.
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(i) Step 1 We first build a dislocation in physical space, with elemeh{s §;), using a
classical Volterra process alor¥. As a dislocation, I(;, b) is imperfect(sinceb, is not
a repeat vector i) and carries a stacking fault along the cut surfage its orbit (L, b))
under the action of th@, translation is ad — 1)-dimensionalimperfectdislocation with
a stacking fault alon@ in E?.

Now, consider the state of strainfitjy due to the presence df (, b;). One can obviously
perform the Volterra process fot(, b;) while keepingu, = O (u is the d-dimensional
displacement vectow; its components alon&, (i, j = 1, 2,...,d), u, its components
alongP, (¢, 8=1,2,...,d,). Transposing to the language of the elasticity of plates, one
can say that th@-plate, which is infinitely thin along the directions g, etc, and whose
d, -dimensional normals spaP,, is in a state of plane strain. Therefore the deformation
carried by [}, b;) is phasonless. The stacking fault in physical space, alluded to above, is
a quite standard stacking fault with no relationship whatsoever to a phason field.

(i) Step 2 Let us concentrate for a while on the hyperdislocationt); the 32 stacking
fault does not persist inL( b); it is dispersed away by a second \olterra procdss (

b,) which is of a pure screw dislocation type. It is easy to visualize how the transition
(L, b)) — (L, b) occurs inE“: the X stacking fault divideghe set of hyperlattice points

in E4, and in its vicinity, into two populations, on either side of the cut surfaselet

us call themw; andw,, and assume that the Volterra process consists in displacements
(step 1) andb, (step 2) ofws, for fixed w,f. After the completion of step 1, those of the
lattice points which are neighbours acrdSsform two sets,ws; and ws» translated one
with respect to the other by a vectly which is not a repeat vector of the lattice; the screw
dislocation adds a complementary translation which brings back the two populations
into period-matching relative positions. The stacking fault disappears (the cut surface loses
any physical reality): the hyperdislocatioh, (b) is perfect. This analysis is very similar to
that used for standard 3D crystals.

(iif) The same sequence of steps involved in the constructioh 06) and now applied
to the construction ofL(;, b) does not tell us how the extension from () to (L, b)
proceeds. The question is indeed more involved, as we now describe.

The quasilattice pointsw; (i.e. the restriction ofw; to P;) and wy, (the restriction
of wy to P;) are intersections of the atomic surfaces witf ChooseX; such that it
does not contain any of those quasilattice points. Consider the quasilattice points which
are neighbours across. The atomic surfaces carried lay; are moved alond®; by an
amountb_ ; this process brings some lattice points into ‘good’ positions with respect to
w2, While some others disappear, since the corresponding atomic surfaces do not intersect
P, any longer, and are replaced by another neighbouring atomic surface which intersects
P, at a site which corresponds precisely to a phason shift (figur@t2son shifts are not
topological objectsthey can easily annihilate—this is visible figure 2—and are made up of
two nearest-neighbouringnismatchesof opposite signs; now two adjoining phason shifts
which have a common edge (figure 2(c)) also amount to two mismatches of opposite signs,
in positions of next-nearest neighbours, since the common edge carries two mismatches
of opposite signs which annihilateMismatches are topological obje¢ts the sense that

1 One might argue over whether one may divide the set of all atomic surfaces into two populations only, above
and belowX (no atomic surfaces itx). In fact the same problem arises in 3D crystals; it is always possible,

in this latter case, at the cost of some distortion of the dislocation line and of its cut surface whose amplitude
is not larger than the lattice parameter, to make the cut surface before completion of the Volterra process avoid
any vertex of the Bravais lattice. The same is true here, although the intersection of an atomic Sunfitice

¥ is generically of dimensionalityd, — 1), because the size of the atomic surfaces is of the order of the repeat
distance inE<.
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one given mismatch can get isolated, far from another mismatch of opposite sign, if ever
a large number of phason shifts separate them. Note also that the sites in shifted positions
are intersections of sets of neighbouring atomic surfaces attached to neighbouring vertices
in EY which can be partitioned inta/( — 1)-dimensional hyperplanar pieces; but it is only

the boundaries of these sets which constitute a mismatch, of dimensiafjalitp, i.e. of

the same dimensionality as the dislocation.

a) b) )

Figure 2. Phason shifts and mismatches illustrated in the Penrose—De Bruijn case: (a) a perfect
sequence of hexagonal patterns, obeying matching rules; (b) a single phason shift and the two
opposite mismatches which it carries; by mutual annihilation of the mismatches, the phason shift

disappears; (c) two neighbouring phason shifts and the two mismatches at the boundaries of the
domain affected by the phason shifts.

2.1.3. The landscape of mismatche3he mismatches result from a special reshuffling (the
phason shifts) of the atoms in the physical spRgeby a cooperative movement varying
from one point to another in a complex way which remains to be analysed; a possible analogy
is with the ‘synchro-shear’ dislocation loops of Kronberg (see, for instance, Amelinckx
1979), which sweep the surface of the stacking fault coherently in standard crystals with
complex structures, in order to relocate some attmosbadly displaced by the imperfect
Burgers glide. In order to illustrate what we have in mind, remember as an example that in
corundum (Amelinckx 1979), the stacking fault, which affects the fcc lattice of the oxygen
atoms, brings the small Al atoms into ‘bad’ tetrahedral sites, while the synchro-shear loops
transform those local ‘bad’ tetrahedral sites into ‘good’ octahedral sites, by a process which
is clearly analogous to a phason shift—which transforms a ‘bad’ empty site (or a bad
analytical continuation of the intersection of the atomic surface Rjthinto a ‘good’ site.
As a consequence, this suggests studying in more detail the nature of those sites which have
suffered shifts in QCs, before and after the introduction of theb( ) dislocation.

We shall refer to the set of mismatches as a ‘landscape’ seen by the dislocation (see
Kléman and Sommers (1991) for a 2D illustration). The perpendicular compdnent
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of the complete Burgers vectdr therefore measures the phason singularity content (the
mismatches) carried by the dislocation; but it is clear that the detailed structure of the
landscape depends in an intrinsic way on the phage, of.e. its relative position irE“.

2.1.4. Relative movement of two dislocation8Ve consider now the problem of two
dislocation linesL; and L, of complete Burgers vectors; and b,, crossing inP; or
circumnavigating one another.

When crossing occurs, the manifold common to the linkg andL; is P, itself. In
the physical spac®, the result is a ‘jog’ very similar to the jogs analysed in standard
crystals (see Kdman and Sommers 1991). The joglof) is by; that onLy is by. This
modification of the shape of the line modifies the elastic (phonon) field accordingly. By the
same process of crossing, the jog lon(in E9) is by, i.e. it has a componert,; which
pushes a part of the line; on one side of the jog relative to that on the other side by
this quantity; but sinceb,; € P, which itself belongs td_i, this has no effect on the
‘phason’ field carried by the dislocation, except along a strip contour of whgthsince
the cut surface has been translated by the quabijtythe landscape is not modified after
the crossing has occurred.

The analysis focircumnavigationis very similar. We start first with a remark regarding
standard crystals, which is of some importance below. The natural definition of the path
traversed by a dislocation line, of Burgers vectob, circumnavigating a fixed dislocation
line L, and of Burgers vectob; is as follows: during its motionl., experiences glide
and climb;glide, which is conservative, does not affect the positioning of the atoms, which
stay in place; but in contrastlimb is not conservative and the atoms diffuse away from
or towards the dislocation: the net amount of diffusion is zero whgtas moved by a
guantity+b; in the reference frame @f;, because each direction is then traversed by equal
amounts back and forth, independently of the Burgers vdgtaf the moving dislocation.

The sign depends on whether the motion is clockwise or anticlockwise. In other words, a
complete circumnavigation does not imply a closed traversed path in the real crystal, but
does imply a closed path in the mapping of the path in a perfect reference crystal.

Similarly, in the E lattice, after circumnavigation, the two dislocation lines are in
different relative positions;tb, for the lineL,, £b; for the lineL,. As above, this dis-
placement of the lines does not change their landscape, except on a contour strip of width
+|b,| along the linel;, +|b;| along the linel,.

2.2. A more generic Volterra procesd:, b) in E¢

The generic case, i.e. whéndoes not contai?; as a factor in the direct sum of equation
(1), yields new properties. We first consider in some detail an intermediary case.

Let us drop propertywr but not properties and y, which are of more physical
significance than property. Start with propertyy alone: a glide plane still exists if
G containsB . By definition, we haves; = L@ By. It can be shown that this is satisfied
if L contains the infinite lindB, as a factor in the cartesian product, i.eLihas the form

L:L”@BJ_GBO' (4)

whereo is a (d, — 1)-dimensional manifold living irP, in a hyperplane perpendicular to
B, . In effect, we have by definition

G=L oBLo®B o=, ®BL®0o) DB (5)
and hences, =L, @ B;.
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Note that, ifo is a (@ — 1)-plane, one returns to the previous case wieredo = P .

The reciprocal theorem is true (see the appendix), i.e. propegione (the existence
of a glide plane in physical space) yields @)= L; & B, & B, @ o(M), whereo is
a manifold which lives inP; in a hyperplane perpendicular B, and is allowed to vary
alongL; (M, € L), it also yields (b) a core that is isotropic in shape (see the appendix).
For the sake of simplicity, we take as a constant manifold in the following.

As a consequence the dislocation line is translationally invariant dlpngs above, but
not along other directions i, , generically. This geometry yields new properties when
consideringtwo dislocations I 1, b1) and (o, by).

Note first that theb;, component ofb; belongs to the dislocation hyperline; hence
any motion of the hyperline alonby, leaves the geometry of the hyperline invariant as a
whole and invariant with respect ®,. Therefore the effect on a dislocatioln;( b,) of the
complete circumnavigation of a dislocatioh,( by) about it amounts to nil iby;, = by,
(which yieldsb,, = by, and thereforéb, = b;): the translational helical symmetry di{,
b1) is not broken by the symmetry oL{, b;). Contrariwise, wherb,, # by, (which
entails thatb,, andb;, are not parallel), a point A belonging tg is transported after the
circumnavigation oL, about it to a point A= A + b,, which does not belong tb;, and
the entire hyperline is displaced to a new positign The landscape has been modified in
a fundamental manner, because the dislocation hypédrlirreas been translated Ef; note
that the translatiob,; does not affect the position of its intersectiby), but it affects the
ug,-components alon@, of the d-dimensional displacement vectby and hence it affects
the phason singularity field carried ty;.

Note that the same property of non-commutativity implies that the intersection of
dislocations in relative motion is not so simple as in standard solids: the fact that the
hyperlinesL; andL, are not parallel outsid®, yields intersections in the physical space
which cannot be analysed as jogs or kinks. The above arguments, supplemented by the
topological analysis below, suggest that the topological obstruction to crossing (i.e. the
non-commutativity) results in the formation of a singularity of the phason field joining the
points of contact of the two lines after their separation.

2.3. The generic case

The above detailed discussion makes easy the formulation of general statements for the
generic case. A complete circumnavigation of a dislocatiog), (bz) in physical space
about another onelL(;, b;) has the effect of translating; to L; = L; + b,, and hence
modifying the phonon as well as the phason field (including its singularities) carriegl by

The modification of the phonon field is due to the displacendgnbf the cut surface’,

and hence of the linky;. The modification of the phason field is due to the displacement
b,, of the hyperlinel ;.

An obvious generalization of the above statement is when one of the defects (or both)
are disclinations: a mixed defedty, w,, by) circumnavigating a mixed defedt {, w1, b1)
displaced ; by a rotationw, and a translatioib,, and consequently changes the landscape
that it carries.

The change of landscape depends on the circumnavigating defect and on the shape of
the defect hyperline; this points towards a possible experimental study of the shape of the
defect inE“.

Finally, the same type of arguments appigyutatis mutandisto the question of the
intersection of two defects. In all cases the existence of hon-commutativity of the physical
space defects in movement boils down to commutative geometrical properties in the high-
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dimensional space. A description of defects limited to the physical space observables
introduces topological concepts in a natural way, as we shall see in section 3.

2.4. Glide with and without the presence of complete or incomplete dislocations

As discussed above, the notion of glide makes sense with the above construction and
definition of L. If the creation of a dislocation in physical space does not involve the
second part of the Volterra process, for example at low temperature when the reshuffling is
not thermally activated, then one expects that dislocatibpst;) will glide in planes of
high density (twofold, threefold or fivefold planes), in which the stacking fault would lie.
Such imperfect dislocations have been observed in AlLiCu icosahedral alloys (Yu DaPeng
1993, Balucet al 1995).

Note finally that, sinceb; is an irrational projection of a lattice vectérin E?, it can
be as close as one wishes to any vediprfixed in advance, and hence as small as one
wishes. From that point of view, the displacement of an incomplete dislocdtignb()
on its glide plane in a QC is very much akin to the glide of a dislocation in a metglass,
whose Burgers vector is not quantified (Friedel 1995a). On the other hand, the addition of
a landscape of mismatches to,( b;), making the dislocation complete-+(, b)—should
stabilize the lineL; in some sense (Friedel 1995b) and therefore probably contribute to a
decrease in mobility.

3. Topological classification of defects

The above results can be expressed in the language of the topological theory of defects. For
simplicity, we shall have in mind, as an example, the octagonal tiling (Socolar 1990), made
up of two types of rhombus, with; = 2, d, = 2. The acceptance domak, is a regular
octagon. The octagonal case bears some physical interest, since octagonal QCs do exist in
nature (Kuo 1990). It has also been handled in some detail in the important paper of Frenkel
et al (1986). This example extends without much difficulty to the duodecagonal and the
icosahedral tilings; however, some care should be taken with the decagonal (Penrose—De
Bruijn) tiling. For more details about this extension, see the remarks at the end of this
section.

Consider a deformed QC, with defects. Uetbe an oriented loop, entirely drawn in
the ‘good’ quasicrystal—good in the sense that it is possible to recognize télith E?
of any vertexM belonging to the QC. Thereforg lifts in E¢ along a pathi"?, such that
each vertex encountered inside the QC goes to the vertex which carries the corresponding
atomic surface ifE¢ and, by extrapolating between vertices, each point inside a 2-face goes
to the corresponding point in some 2-faceBf, and each point inside a rhombohedron
goes to the corresponding point inside some 3-fac&9n Note that this mapping does
not require that the matching rules be obeyed albngf I'? is an open path, its closure
failure b necessarily joins two equivalent points in the hyperlattice, Bndonsidered as a
oriented circuit embedded iB?, is simply a Burgers circuit which encloses a dislocation
line L of the Burgers vectob in the hyperlatticeL intersects the/;-dimensional physical
spaceP; along some lineL;. Such defects are therefore classified by the Abelian group
of translational symmetries of the hyperlattice, or equivalently by the fundamental group
71(T%) of the d-dimensional torus (i.e. the unit hypercell witd — 1)-dimensional faces
identified point by point).

T¢ is the order parameter space of the hypercrystal (restricted to the translational part
of the order parameter), but the order parameter space of the QC itself is certainly smaller,
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@

(b)

Figure 3. The order parameter space for an octagonal QC: (a) its planar development

as an octagon with opposite sides identified; the octagon is the projection of the 4-cube onto
P.; (b) its representatiok) as a closed manifold (a pretzel with two handles; see Hilbert and
Cohn-Vossen 1952).

and embeddable M. Since any poind/; € P, yields a unique realization of the QC in a
dy-plane,P (M, is the intersection dP; with P, ), nothing (but see below for an important
caveat) is lost by replacinf by the projection of the hypercell ontoP  —this projection

is preciselyA | —with (d, — 1)-dimensional faces identified according to the identification
of the hypercellC?. Call the manifold obtained by performing this identificatioh In

the octagonal cask is a 2D torus with two handles (figure 3). Any two points An
(the octagon) equivalent in this identification are separated by a vetowhich is the
projection of a vectord; in E4 which joins two points on the hypercell equivalent in a
‘silhouetting’ translation (in the language of Frenkt¢kl). The A;, generate a group which
has the following structure, discussed in Coxeter and Moser’s classic book (Coxeter and
Moser 1972). We follow their notation (except for the introduction of the subscript *

The four-dimensional hypercul@¢ (this is the octagonal case) projects oRtpalong a
regular octagon, whose directed edgesa,, az anday are the projections of the hypercube
edges; (i =1, 2, 3, 4). The translatioAds = — A1 in T bringse; ontoey, on the opposite
silhouetting edge of the hypercube, etc. Consequedkly, = —A;, in P, bringsa; onto
a; on the opposite edge of the octagon, etc. The group of translations represented by the
e; yield a group represented by tlae; clearly, this group generates the Burgers vectors
alluded to in section 2 of this articldi = ), n;e;. We can equally well consider the group
represented by thd,;, since these vectors form a complete babis: >, m; A;. Now, call
the generators of the ‘projected’ abstract grotip ; as shown by Coxeter and Moser, the
group generated by the four generatdrs is no longer Abelian and obeys the relation

r=A11Az Az Ay ATTASTAGIAT = 1 (6)
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Define new generators

ay = Az Az  Agy az = As; AgL A7) @

az = Ag1 A11 A2 as = Az Ag As) .
Their effect is clearly a translation along, a,, az anda,4. Note that there is not just one
choice (e.ga; = Az Az A4y, etc, would fit equally), but ours has the advantage of putting
in place of equation (6) another one which has a very symmetric form, and corresponds to
a natural order on the octagon:

r= a1a2a3a4aila£1a§lail =1 (8)

The important issue as regards the choic&ads the order parameter space of the QC
is that now the fundamental groun (U) generated by thd;, (or equivalently bya,, az, as
anday), and whose elements are oriented closed loopd,iis no longer Abelian. Hence
m1(U) is the group generated by the defined above, obeying the relation of equation (7);
it is also the group of hyperbolic translations of the hyperbolic plane tiled with octagons
(cf. Coxeter and Moser 1972), th8, 8} tessellation in the Schfli-Coxeter notation. The
complete symmetry group of this tessellation, denoted [8, 8], is generated by reflections in
the edges of the fundamental triangle ONZ of the octaganU) is an invariant subgroup
(of index 16) of [8, 8]. In crystallographic terms, it is useful to consider [8, 8] as a
curved crystglit carries all of the symmetries of the quasicrystal—not only the octagonal
symmetries, but also its hidden translational symmetries. As an object of algebraic topology,
it is the universal coverU of U; it has the same relationship with that the simple cubic
Bravais lattice has with the 3-toruE® opened out under the shape of a cube; the simple
cubic lattice is the universal cover of the 3-torus.

The elements ofr;(U) classify the defects in the QC; according to the way in which
we have constructed them—by projection of the—these defects are akin to dislocations,
but non-Abelian, a property reminiscent of what we have obtained by the naive \olterra
construction. We can go further in the comparison between the two approaches; in the
\olterra process approach, we showed that the landscape carried by a moving defect was
dependent on the path followed, and in particular was modified in a fundamental way if
the defect performs a complete circumnavigation about another one. On the other hand it
is a result of the topological theory of defects that a defect of ctassz,(U) is turned
into a defect of the homotopy claggh~ (h € m1(U)) after it has achieved a complete
turn abouts (Kléman 1977, Trebin 1984); in other words, one gets in this avajfferent
realization of the same defeatepresented inr;(U) by a different element but belonging
to the same conjugacy class asif the classes andg do not commute. This is exactly
what we got above, which makes it natural to interpret the non-commutativity; @f)
in terms of mismatches. More precisely, lgf = a;a;a; 'a;* be a commutator of the
fundamental groupr1(U), and letN(c;;) be the commutator subgroup generated bycthe

all of the elements oN (c;;) are of the form . .af"ajl."a,lj coaalal™ . ala)ap ... such
that...+/; +m; +n; +...=0. Itis easy to show thaV(c;;) is an invariant subgroup of
1 (U); the quotient group

H1(U) = m1(U)/N(cij) 9
is the largest Abelian subgroup af(U); it has the representation

Hi(U) = (a1.a2.a3.aa4; aiajai_laj_l =1) (10)
that is

Hy(U) = 7% (11)
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as expected for the group of dislocations, which we retrieve with their ordinary significance.
Any element of H;(U) is in one-to-one correspondence with a conjugacy class; {b).
Take for example the conjugacy classaf its elements are of the form

aiakafl = aiakalfla,:lak = Cixlx (12)

and are homomorphic with the same elemeptin H1(U): they all represent the same
complete dislocation. We also understand this in the light of our former discussion of
the Volterra process. We can therefore interpret the commutatas the class of a defect
which has been added toby a rotation about a defect of homotopy classwere the group
Abelian, the class of this defect would be the null class. In fagtjs precisely the class

of the defect which joins two dislocations after they have crossed. Such commutators are
therefore related to the set of mismatches (the landscape) surrounding a complete dislocation.
For the sake of completeness, note that the classificatiomlofidual mismatches has also

been considered (Misirpashaev 1995).

The elements o1 (U) are isomorphic with the elements of(T¢), i.e. with the whole
set of dislocations of the high-dimensional lattiE€. This comes from the fact that the
vector basisz; is complete, so any lattice vector, however small its projectioA in is a
linear combination of the;.

Caveat in fact, the situation is somewhat more complicated, becblusean extended
order parameter space, in the sense that infinitely many points represent the same realization
of the QC, but with the exception of some global translation alpglt is indeed possible
to find a projectionb, in P, of somed-dimensional vectob whose modulugb, | is as
close as one wishes to any value (and in particular as small as one wishes; think of a very
long b-vector nearly parallel t®;), and whose extremities can therefore both b&in A
Burgers circuit surrounding the corresponding dislocation would map onto an open circuit
its projectionb, = ¥",_, ,ma; in A, would not be recognized as joining equivalent
points inU. In fact, because of the way in which we have constructed the order parameter
space, these two points are not equivalentinWe call those dislocations which are not
visible as loops inJ inner defectsbecause for each of them the value|bf| is smaller
than the span of the acceptance domain, and, correlating with this, the physical Burgers
vector modulugd| is large. The way to resolve this difficulty is as follows.

Consider the case where the quasicrystal is invariant under inflation. Then such inner
vectors belong to some superquasicrystal of the quasicrystal lattice, which can be defined in
a precise way, as follows. Introduce the star of all of the vedigrsvhich form the orbit
of b, under the action of the quasicrystalline point grougPin; after the manner of Olami
and Alexander (1988), introduce the intersection = A, (0) N A, (by,), which is the set
of the vertices which have a neighbouring vertex at a distance equal to or largel;than
The intersection

AL = (AL

of all of the sets forming the orbit o, defines an acceptance domain which is deflated
with respect toA, by some factor, and such that, joins identifiable points on4,,
on opposite boundaries. ldentifying these boundaries yields an order parametet/space
whose (non-Abelian) fundamental gromp(U ) classifies the dislocations (and disvections)
of a ‘quasisuperstructure’, for which all of the above arguments can be repeated.

Extension to other quasicrystalline symmetried/e have shown elsewhere @han
1990, 1992) that the universal cover of the acceptance domains of the pentagonal and the
icosahedral QCs have properties similar to the above, i.e. infinite groups of translations
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with remarkable non-commutative properties, and we have interpreted the commutators in
terms of mismatches carried by the complete dislocations. First, notice that the discussion
of the first section of this paper is general, and applies to any quasicrystalline symmetry;
therefore the effects of non-commutativity on the dislocations, displayed by Volterra process
considerations, are still true. Second, the acceptance domain of any type of quasicrystal,
in the d-dimensional description, does not tiR,; furthermore the projection of the
hypercube always provides equivalence relations between opposite edges, faces, etc, since
the hypercube has equivalent opposite boundaries, due to the periodiéity therefore,
an interpretation of the acceptance domain as a closed manifgitaying the role of
an extended order parameter space is possible; furthermore, by gluing infinitely many
acceptance domains; along equivalent faces, one obtains a ‘crystal’, which is not flat
since it does not tilé® | ; its translational properties are therefore non-Abelian, etc.

A gquestion of terminologyE Cartan (1963) has introduced the tetransvections—
which generalize the concept of translations—for the displacements in a hyperbolic plane
which are represented by commutators of the group of displacements which leave the
hyperbolic plane invariant—remember that thentroduced above for the octagonal QC are
translations in dyperboliccrystal, the universal covey of U. The complete dislocations
(L, b) in a QC are very special objects, since, through the presence of mismatches, they
break the symmetries of this hyperbolic crystal. In that sense the hyperbolic crystal thus
constructed is the true crystalline representative of the QC, one of its advantages being that
it has the same dimensionality as the QC. All of these properties point to the necessity
of using a specific substantive for the ‘dislocations’ of the type, ®), which we have
up to now calledcomplete dislocationsn order to differentiate them from the imperfect
dislocations I, by); although imperfect,L(;, b) is a dislocation in the usual meaning of
the term, while I, b) is not. In a former paper we suggested calling the complementary
(Ly, by), i.e. the landscape—an object, made up of many partly independent parts—which
transforms the imperfect dislocation into a complete one, a disvection, in honour of Cartan.
However, the noun ‘mismatches’ (for the parts) fits them quite properly; on the other hand
complete dislocationd (;, b) have been observed and their total Burgers vectors measured.
Therefore we propose to reserve the natisvectionfor a ‘complete dislocation’l(, b) in
a quasicrystal, an object which after all is not a dislocation in the usual sense of the term.
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Appendix

G =L @ B is the glide manifold irE?; we can write it as a union of manifolds carried by
Gy: hence

G=[J g
reG

whereg(r) C P, is ad,-dimensional manifold ane a running point inG;. Extracting
B, from G;, we can alternatively write

G=JBjegm) (A1)

rely
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Since

L=JAm

’I’ELH

where(r) C P, is ad, -dimensional manifold, we also have

G=JBaAn) (A2)

TELH

Thereforel'(r) = {B @ g(r)} andA(r) = {B® A(r)} generate the same manifd®l when
translated alond ;. I'(r) is a ruled manifold (alondd); henceA(r) itself must be ruled
along B, which is possible only if\(r) is ruled alongB,, because the cartesian product
B @ B, (which is alsoB; @ B ) then appears i\ (r). Hence,

A(r) =B, ®o(r) (A3)
and
L=JBLoom). (A4)

T'ELH

Let us now assume for a while that(r) is a manifold which has non-zero dimensional
components which do not belong B,. Now, take a running point on L. Using the

same argument as in &mnan and Sommers (1991), the atomic surf&edtached tar (r)
intersectP; along a singular regioh; which has the shape of a 2D singular furrow about

and therefore has the disadvantage of extending the core region geometrically. None of the
other atomic surfaces attached to the componentB ofb o ()} in P at pointr yield any
intersection withP other thanr itself. Hence in the generic case we must take) C P,

in order to preserve amall and locallyisotropic core. The precise shape @{r) probably
depends orb, and shows up possibly quasicrystalline symmetries. The intersectitn of
with P, must contairB |, in order to satisfy conditiong andy.
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